Home > david.scheurer@noaa.gov

Projects

2

View Results

Products & Data

20

View Results

General Pages

0

 

Internships

0

 

Projects

Mechanisms Controlling Hypoxia – Integrated Causal...

We’re examining the complex physical and biogeochemical relations that control and maintain the low-oxygen dead zone in the northern Gulf of Mexico (nGOM). We are combining field data from moored ...
Read More

Predicting Impacts of Climate Change on Success of...

We are investigating how rising atmospheric temperature and changing precipitation patterns will affect coastal hypoxia (low dissolved oxygen) in Chesapeake Bay. Hypoxia in the bay, caused by an excessive influx ...
Read More

News

Large ‘Dead Zone’ Measured in Gulf of Mexico

Dr. Nancy Rabalais (at left) and crew, aboard R/V Pelican, prepare to deploy a conductivity, temperature, and depth (CTD) carousel (rosette) containing an array of Niskin water sampling bottles. The ...
Read More

NOAA Forecasts Very Large ‘Dead Zone’ for Gulf of ...

NCCOS scientists are forecasting this summer’s Gulf of Mexico hypoxic zone or "dead zone"—an area of low to no oxygen that can kill fish and other marine life—will be approximately ...
Read More

NCCOS Funds $6.8M for New and Continuing Harmful A...

NOAA’s National Centers for Coastal Ocean Science (NCCOS) is pleased to announce support for 28 new and continuing harmful algal bloom (HAB) research awards in 2018. These awards, totaling $6.8M, ...
Read More

Why Nutrient-Enriched Waters Favor Large Single-Ce...

Ecological studies show that bottom-up (e.g., nutrient input) and top-down (e.g., grazing/predation) pressuresmay change the structure of aquatic ecosystems with 'cascading' effectsthroughoutthe food chain. Recent research supportsthat zooplankton grazing in ...
Read More

Gulf of Mexico Offshore Dead Zone Linked to Missis...

Twenty-five years of NCCOS sponsored research shows that the offshore summer hypoxic (low-oxygen) 'dead zone' in the Gulf of Mexico is strongly linked to nutrient loading from the Mississippi River ...
Read More

New Research Defines Origin and Dynamic Behavior o...

Reducing the size of the widespread area of hypoxia (low oxygen) in the northern Gulf of Mexico - known as the "Dead Zone" - represents one of the nation's crucial ...
Read More

Products

Maps, Tools & Applications

No posts found.

Data & Publications

A coupled physical-biological model of the Northern Gulf of Mexico shelf: model description, validation and analysis of phytoplankton variability

The Texas-Louisiana shelf in the Northern Gulf of Mexico receives large inputs of nutrients and freshwater from the Mississippi/Atchafalaya River system. The nutrients stimulate high rates of primary production in the river plume, which contributes to the development of a ...
Read More

A modeling study of physical controls on hypoxia generation in the northern Gulf of Mexico

The Louisiana shelf (LA shelf) in the northern Gulf of Mexico experiences hypoxic conditions every summer due to the combination of eutrophication and strong water column stratification. Here we use a three-dimensional circulation model coupled with a simple oxygen model ...
Read More

Dispersal of Mississippi and Atchafalaya Sediment on the Texas-Louisiana Shelf: Model Estimates for the Year 1993

A three-dimensional coupled hydrodynamic-sediment transport model for the Texas–Louisiana continental shelf was developed using the Regional Ocean Modeling System (ROMS) and used to represent fluvial sediment transport and deposition for the year 1993. The model included water and sediment discharge ...
Read More

Effects of model physics on hypoxia simulations for the northern Gulf of Mexico: A model intercomparison

A large hypoxic zone forms every summer on the Texas-Louisiana Shelf in the northern Gulf of Mexico due to nutrient and freshwater inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through reductions ...
Read More

Ensemble modeling informs hypoxia management in the northern Gulf of Mexico

A large region of low-dissolved-oxygen bottom waters (hypoxia) forms nearly every summer in the northern Gulf of Mexico because of nutrient inputs from the Mississippi River Basin and water column stratification. Policymakers developed goals to reduce the area of hypoxic ...
Read More

Establishing National Ocean Service Priorities for Estuarine, Coastal, and Ocean Modeling: Capabilities, Gaps, and Preliminary Prioritization Factors

The National Oceanic and Atmospheric Administration (NOAA) and National Ocean Service (NOS) Strategic Plans present a vision for protecting, restoring, and managing our nation's aquatic resources through proactive ecosystem approaches to management. These approaches require integrated, multidisciplinary models and coordination ...
Read More

Historical trends of hypoxia in Changjiang River estuary: Applications of chemical biomarkers and microfossils

Over the past two decades China has become the largest global consumer of fertilizers, which has enhanced river nutrient fluxes and caused eutrophication and hypoxia in the Yangtze (Changjiang) large river delta-front estuary (LDE). In this study, we utilized plant ...
Read More

Interannual Variation in Stratification over the Texas–Louisiana Continental Shelf and Effects on Seasonal Hypoxia

A numerical dye is used to track freshwater released in May and June from the Mississippi and Atchafalaya rivers using a hydrodynamic model. These months are chosen because discharge and nutrient load in May and June is significantly correlated with ...
Read More

Linking molecular microbial ecology to geochemistry in a coastal hypoxic zone

Multiple environmental mechanisms have been proposed to control bottom water hypoxia (<2 mg O2 L?1) in the northern Gulf of Mexico Louisiana shelf. Near-bottom hypoxia has been attributed to a direct consumption of oxygen through benthic microbial respiration and a ...
Read More

Modeling Coastal Hypoxia: Numerical Simulations of Patterns, Controls and Effects of Dissolved Oxygen Dynamics

This book provides a snapshot of representative modeling analyses of coastal hypoxia and its effects. Hypoxia refers to conditions in the water column where dissolved oxygen falls below levels that can support most metazoan marine life (i.e., 2 mg O2 ...
Read More
Loading...

General Pages

No posts found.

NOAA Internship Opportunities

No posts found.
Query time: 0.25 secs
NCCOS-with-tag-to-side-bld

NCCOS delivers ecosystem science solutions for stewardship of the nation’s ocean and coastal resources, in direct support of NOS priorities, offices, and customers, and to sustain thriving coastal communities and economies.

National Centers for Coastal Ocean Science
1305 East West Highway, Rm 8110
Silver Spring, MD 20910
Phone: (240) 533-0300 / Fax: (301) 713-4353
Email: nccos.webcontent@noaa.gov

    Sign Up for Our Quarterly Newsletter