Home > Explore Data & Reports > A modeling study of physical controls on hypoxia generation in the northern Gulf of Mexico

Citation:

Yu, L., K. Fennel, and A. Laurent. 2015. A modeling study of physical controls on hypoxia generation in the northern Gulf of Mexico. Journal of Geophysical Research: Oceans, 120(7):5019-5039. https://doi.org/10.1002/2014JC010634

Data/Report Type:

Sponsored Research

Description

The Louisiana shelf (LA shelf) in the northern Gulf of Mexico experiences hypoxic conditions every summer due to the combination of eutrophication and strong water column stratification. Here we use a three-dimensional circulation model coupled with a simple oxygen model to examine the physical controls on hypoxia generation on the LA shelf. The model assumes a constant oxygen utilization rate in the water column and a sediment oxygen consumption rate that depends on the bottom water oxygen concentration and temperature. Despite its simplicity, the model reproduces the observed variability of dissolved oxygen and hypoxia on the LA shelf, highlighting the importance of physical processes. Model results demonstrate that both river discharge and wind forcing have a strong effect on the distribution of the river plume and stratification, and thereby on bottom dissolved oxygen concentrations and hypoxia formation on the LA shelf. The seasonal cycle of hypoxia is relatively insensitive to the seasonal variability in river discharge, but the time-integrated hypoxic area is very sensitive to the overall magnitude of river discharge. Changes in wind speed have the greatest effect on the simulated seasonal cycle of hypoxia and hypoxic duration, while changes in wind direction strongly influence the geographic distribution of hypoxia. Given that our simple oxygen model essentially reproduces the evolution of hypoxia simulated with a full biogeochemical model and that physical processes largely determine the magnitude and distribution of hypoxia, a full biogeochemical model might not be necessary for short-term hypoxia forecasting.

Note to readers with disabilities: Some scientific publications linked from this website may not conform to Section 508 accessibility standards due to the complexity of the information being presented. If you need assistance accessing this electronic content, please contact the lead/corresponding author, Primary Contact, or nccos.webcontent@noaa.gov.

Explore Similar Data/Reports

About NCCOS

NCCOS delivers ecosystem science solutions for stewardship of the nation’s ocean and coastal resources to sustain thriving coastal communities and economies.

Stay Connected

Sign up for our quarterly newsletter or view our archives.

NCCOS Multimedia

Visit our new NCCOS Multimedia Gallery. 

Follow us on Social

Listen to our Podcast

Check out our new podcast "Coastal Conversations"