This dataset contains simulated storm surge results for the northern Gulf of Mexico (Mississippi, Alabama, and the Florida panhandle) using a high-resolution SWAN+ADCIRC model (Bilskie, 2016b). The modeling approach incorporates dynamic processes including salt marsh evolution, shoreline and dune height change, land use land cover, as well as sea level rise, for the year 2100. This modeling effort permits more robust and realistic results than using a static, or ‘bathtub,’ approach (Passeri et al., 2015). The outcome is a better understanding of the storm surge generating mechanisms and interactions among hurricane characteristics and the Northern Gulf of Mexico’s geophysical configuration. There are two broad categories of storm surge model results from the Ecological Effects of Sea Level Rise Northern Gulf of Mexico (EESLR-NGOM) project: 1) Storm Surge by Storm [29 GB total file size, 500 files (unzipped)] and 2) Storm Surge Maximum of Maximums (MOMs) [13 GB total file size, 50 files (unzipped)]. The datasets contain both water surface elevation and inundation depth above ground as model outputs. Each storm surge model output, described below, is provided for the following 5 sea level rise scenarios (Parris et al. 2012): Initial Condition (c. 2000) (no change from c. 2000 mean sea level (MSL)), Low (+0.2m from MSL), Intermediate-Low (+0.5m from MSL), Intermediate-High (+1.2m from MSL), and High (+2.0m from MSL).