Home > Explore Data & Reports > Model Simulations of the Bay of Fundy Gyre: 2. Hindcasts for 2005-2007 Reveal Interannual Variability in Retentiveness

Citation:

Aretxabaleta, A.L., D.J. McGillicuddy, K.W. Smith, J.P. Manning, and D.R. Lynch. 2009. Model Simulations of the Bay of Fundy Gyre: 2. Hindcasts for 2005-2007 Reveal Interannual Variability in Retentiveness. Journal of Geophysical Research, 114:C09005. http://dx.doi.org/10.1029/2008JC004948

Data/Report Type:

Sponsored Research

Description

A persistent gyre at the mouth of the Bay of Fundy results from a combination of tidal rectification and buoyancy forcing. Here we assess recent interannual variability in the strength of the gyre using data assimilative model simulations. Realistic hindcast representations of the gyre are considered during cruises in 2005, 2006, and 2007. Assimilation of shipboard and moored acoustic Doppler current profiler velocities is used to improve the skill of the simulations, as quantified by comparison with nonassimilated drifter trajectories. Our hindcasts suggest a weakening of the gyre system during May 2005. Retention of simulated passive particles in the gyre during that period was highly reduced. A recovery of the dense water pool in the deep part of the basin by June 2006 resulted in a return to particle retention characteristics similar to climatology. Retention estimates reached a maximum during May 2007 (subsurface) and June–July 2007 (near surface). Interannual variability in the strength of the gyre was primarily modulated by the stratification of the dense water pool inside the Grand Manan Basin. These changes in stratification were associated with mixing conditions the preceding fall–winter and/or advectively driven modification of water mass properties.

Note to readers with disabilities: Some scientific publications linked from this website may not conform to Section 508 accessibility standards due to the complexity of the information being presented. If you need assistance accessing this electronic content, please contact the lead/corresponding author, Primary Contact, or nccos.webcontent@noaa.gov.

Explore Similar Data/Reports

About NCCOS

NCCOS delivers ecosystem science solutions for stewardship of the nation’s ocean and coastal resources to sustain thriving coastal communities and economies.

Stay Connected

Sign up for our quarterly newsletter or view our archives.

NCCOS Multimedia

Visit our new NCCOS Multimedia Gallery. 

Follow us on Social

Listen to our Podcast

Check out our new podcast "Coastal Conversations"