Recent oceanographic observations and a retrospective analysis of nutrients and hydrography over the past five decades have revealed that the principal source of nutrients to the Gulf of Maine, the deep, nutrient-rich continental slope waters that enter at depth through the Northeast Channel, may have become less important to the Gulf's nutrient load. Since the 1970s, the deeper waters in the interior Gulf of Maine (>100 m) have become fresher and cooler, with lower nitrate (NO3) but higher silicate (Si(OH)4) concentrations. Prior to this decade, nitrate concentrations in the Gulf normally exceeded silicate by 4–5 ?M, but now silicate and nitrate are nearly equal. These changes only partially correspond with that expected from deep slope water fluxes correlated with the North Atlantic Oscillation, and are opposite to patterns in freshwater discharges from the major rivers in the region. We suggest that accelerated melting in the Arctic and concomitant freshening of the Labrador Sea in recent decades have likely increased the equatorward baroclinic transport of the inner limb of the Labrador Current that flows over the broad continental shelf from the Grand Banks of Newfoundland to the Gulf of Maine. That current system now brings a greater fraction of colder and fresher deep shelf waters into the Gulf than warmer and saltier offshore slope waters which were previously thought to dominate the flux of nutrients. Those deep shelf waters reflect nitrate losses from sediment denitrification and silicate accumulations from rivers and in situ regeneration, which together are altering the nutrient regime and potentially the structure of the planktonic ecosystem.