Home > Explore Data & Reports > Impact of Armored Shorelines on Shore-Zone Fish Density in a Mid-Atlantic, USA, Estuary: Modulation by Hypoxia and Temperature

Citation:

Balouskus, R.G., and T.E. Targett. 2017. Impact of Armored Shorelines on Shore-Zone Fish Density in a Mid-Atlantic, USA, Estuary: Modulation by Hypoxia and Temperature. Estuaries and Coasts. https://doi.org/10.1007/s12237-017-0258-6

Data/Report Type:

Sponsored Research

Description

Anthropogenic modifications of estuarine environments, including shoreline hardening and corresponding alteration of water quality, are accelerating worldwide as human population increases in coastal regions. Estuarine fish species inhabiting temperate ecosystems are adapted to extreme variations in environmental conditions including water temperature, salinity, and dissolved oxygen across seasonal, daily, and hourly time scales. The present research utilized quantitative sampling to examine the spatiotemporal distribution of shore-zone estuarine fish species in association with four unique shoreline types across a range of water temperature and dissolved oxygen conditions. Fish were collected from the intertidal and shallow subtidal region of four shoreline types, Spartina alterniflora marsh, Phragmites australis marsh, riprap, and bulkhead, in the summer and fall of 2009 and 2010. Analyses were performed to (1) compare mean fish density among shoreline types across all water conditions and (2) explore relationships of the complete fish assemblage, three functional species groupings, and two fish species (Fundulus heteroclitus and Menidia menidia) to unique shoreline/water conditions. Significantly greater mean fish densities were found along S. alterniflora shorelines than armored shorelines. Several metrics including fish density, species richness, and occurrence rates suggest S. alterniflora shorelines may serve as a form of refuge habitat during periods of low dissolved oxygen and high temperatures for various species, particularly littoral-demersal species including F. heteroclitus. Potential mechanisms that could contribute to a habitat providing refuge during adverse water quality conditions include tempering of the adverse condition (decreased temperatures, increased dissolved oxygen), predation protection, and increased foraging opportunities.

Note to readers with disabilities: Some scientific publications linked from this website may not conform to Section 508 accessibility standards due to the complexity of the information being presented. If you need assistance accessing this electronic content, please contact the lead/corresponding author, Primary Contact, or nccos.webcontent@noaa.gov.

Explore Similar Data/Reports

About NCCOS

NCCOS delivers ecosystem science solutions for stewardship of the nation’s ocean and coastal resources to sustain thriving coastal communities and economies.

Stay Connected

Sign up for our quarterly newsletter or view our archives.

NCCOS Multimedia

Visit our new NCCOS Multimedia Gallery. 

Follow us on Social

Listen to our Podcast

Check out our new podcast "Coastal Conversations"