Alteration of estuarine shorelines associated with increased urbanization can significantly impact biota and food webs. This study determined the impact of shoreline alteration on growth and movement of the estuarine fish Fundulus heteroclitus in a tributary of the Delaware Coastal Bays. Fundulus heteroclitus is abundant along the east coast of the USA, and is an important trophic link between marsh and subtidal estuary. The restricted home range of F. heteroclitus allowed discrete sampling, and fish growth comparisons, along 35–65-m long stretches of fringing Spartina alterniflora and Phragmites australis marsh, riprap, and bulkhead. Fundulus heteroclitus were tagged with decimal Coded Wire Tags. Of 725 tagged F. heteroclitus, 89 were recaptured 30–63 days later. Mean growth rate (0.06–0.15 mm day?1 across all shoreline types) was greatest at riprap, lowest at Spartina and Phragmites, and intermediate at bulkhead, where growth was not significantly different from any other shoreline. This suggests that discernible environments exist along different shoreline types, even at the scale of tens of meters. No difference in movement distance was detected at different shoreline types; most individuals displayed a high degree of site fidelity. Forty-seven percent were recaptured within 5 m of their tagging location, although alongshore movements up to 475 m were recorded. Estimates of relative F. heteroclitus productivity, using relative density data from a concurrent study, were highest along Spartina and Phragmites, intermediate at riprap, and lowest at bulkhead. Therefore, despite greater growth rates along riprap than at vegetated shores, armoring reduces abundance sufficiently to negatively impact localized productivity of F. heteroclitus.