Home > Explore Data & Reports > Effects of inorganic and organic nitrogen and phosphorus on the growth and toxicity of two Alexandrium species from Hong Kong


Xu, J., A.Y.T. Ho, L. He, K. Yin, C. Hung, N. Choi, P.K.S. Lam, R.S.S. Wu, D.M. Anderson, and P.J. Harrison. 2012. Effects of inorganic and organic nitrogen and phosphorus on the growth and toxicity of two Alexandrium species from Hong Kong. Harmful Algae, 16:89-97. https://doi.org/10.1016/j.hal.2012.02.006

Data/Report Type:

Sponsored Research


The effects of three nitrogen (N) and two phosphorus (P) inorganic and organic forms on the growth, toxin content and composition, toxin production, and chemical composition of Alexandrium catenella and Alexandrium tamarense isolated from coastal waters of Hong Kong were determined. The toxin production rate and cellular toxin content for A. catenella were at least 10-fold higher than A. tamarense. The highest net production rate (Rtox) of the two Alexandrium species was generally achieved in the exponential phase. However, the highest cellular toxin content occurred in the stationary phase in all cultures, partly due to the enhancement of cell volume caused by P limitation, except for urea grown cultures where cellular toxin content remained low throughout the growth stage. For A. catenella, NH4 induced the highest growth rate (0.59 d?1), toxin production rate (?tox, 1.0 ?mol L?1 d?1; Rtox, 2.5 pmol cell?1 d?1) and cellular toxin content (2.8 pmol cell?1) among the three nitrogen sources regardless of inorganic and organic P. The form of phosphorus had limited effect on A. catenella. In contrast, the response of A. tamarense to different forms of nitrogen and phosphorus was more complex. NH4 induced the highest cellular toxin content (445 fmol cell?1), while NO3 yielded the highest toxin production rate (?tox, 0.71 nmol L?1 d?1; Rtox, 140 fmol cell?1 d?1) and urea produced the highest growth rate (0.57 d?1). For A. tamarense, the highest toxin production rate occurred under organic phosphorus. The relationship between toxin accumulation and the form of nitrogen varied with the phosphorus source. A. catenella cultures grown on NO3 and NH4 have about 80–90% C1/2 toxins and 5–15% GTX 1/4 toxins compared to 65–75% C1/2 toxins and 25–35% GTX 1/4 toxins in cultures grown on urea. Our results suggest that during summer when Alexandrium uses NH4 from local sewage effluent as its preferred nitrogen source, it might become more toxic in combination with episodically occurring P limitation in Hong Kong waters.

Note to readers with disabilities: Some scientific publications linked from this website may not conform to Section 508 accessibility standards due to the complexity of the information being presented. If you need assistance accessing this electronic content, please contact the lead/corresponding author, Primary Contact, or nccos.webcontent@noaa.gov.

Explore Similar Data/Reports


NCCOS delivers ecosystem science solutions for stewardship of the nation’s ocean and coastal resources to sustain thriving coastal communities and economies.

Stay Connected

Sign up for our quarterly newsletter or view our archives.

NCCOS Multimedia

Visit our new NCCOS Multimedia Gallery. 

Follow us on Social

Listen to our Podcast

Check out our new podcast "Coastal Conversations"