Two-hundred and twenty seven satellite-tracked drifters were deployed in the Gulf of Maine (GoM) from 1988 to 2007, primarily during spring and summer. The archive of tracks includes over 100,000 km logged thus far. Statistics such as transit times, mean velocities, response to wind events, and preferred pathways are compiled for various areas of the coastal GoM. We compare Lagrangian flow with Eulerian estimates from nearby moorings and evaluate drifter trajectories using Ekman theory and 3-D ocean circulation models. Results indicate that the Gulf of Maine Coastal Current is a strong and persistent feature centered on the 94±23 m isobath, but that particles: (a) deviate from the seasonal-mean core fairly regularly, and are often re-entrained; (b) follow a slower (9 cm/s), less-constrained path in the western portion off the coast of Maine relative to the eastern (16 cm/s) section; and (c) can be affected by wind events and small-scale baroclinic structures. Residence times calculated for each 1/2° grid cell throughout the GoM depict some regions (Eastern Maine and Western Nova Scotia) as being relatively steady, flow-through systems, while others (Penobscot, Great South Channel) have more variable, branching pathways. Travel times for drifters that are retained within the coastal current along the entire western side of the Gulf of Maine are typically less than two months (55 days).