Home > Explore Data & Reports > Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

Citation:

Gobler, C.J., D.L. Berry, S.T. Dyhrman, S.W. Wilhelm, A. Salamov, A.V. Lobanov, Y. Zhang, J.L. Collier, L.L. Wurch, A.B. Kustka, B.D. Dill, M. Shah, N.C. VerBerkmoes, A. Kuo, A. Terry, J. Pangilinan, E.A. Lindquist, S. Lucas, I.T. Paulsen, T.K. Hattenrath-Lehmann, S.C. Talmage, E.A. Walker, F. Koch, A.M. Burson, M.A. Marcoval, Y.-Z. Tang, G.R. LeCleir, K.J. Coyne, G.M. Berg, E.M. Bertrand, M.A. Saito, V.N. Gladyshev, and I.V. Grigoriev. 2011. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proceedings of the National Academy of Sciences of the United States of America, 108:4352-4357. https://doi.org/10.1073/pnas.1016106108

Data/Report Type:

Sponsored Research

Description

Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus, has facilitated the proliferation of this and potentially other HABs.

Note to readers with disabilities: Some scientific publications linked from this website may not conform to Section 508 accessibility standards due to the complexity of the information being presented. If you need assistance accessing this electronic content, please contact the lead/corresponding author, Primary Contact, or nccos.webcontent@noaa.gov.

Explore Similar Data/Reports

About NCCOS

NCCOS delivers ecosystem science solutions for stewardship of the nation’s ocean and coastal resources to sustain thriving coastal communities and economies.

Stay Connected

Sign up for our quarterly newsletter or view our archives.

NCCOS Multimedia

Visit our new NCCOS Multimedia Gallery. 

Follow us on Social

Listen to our Podcast

Check out our new podcast "Coastal Conversations"