An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Legacy Publications Explorer

You are here: Publications / Publication Details

Publication Details

Please note this explorer contains 2017 and prior publications and is no longer updated. Visit Data Reports Explorer for the latest NCCOS research data and reports.

Quantifying and simulating stormwater runoff in watersheds

Author(s): Blair, A.; D. Sanger; D. White; A.F. Holland; L. Vandiver; C. Bowker; S. White

NCCOS Center: HML

Publication Type: Journal Article

Journal Title: Hydrological Processes

Date of Publication: 2014

Reference Information: 28(3): 559-569

Keywords: climate change; coastal resource management; development; land use change; modeling; southeast coastal plain; stormwater runoff

Abstract: We developed the Stormwater Runoff Modeling System (SWARM) based on curve number and unit hydrograph methods of the U.S. Department of Agriculture, Natural Resources Conservation Service. SWARM models single events, targets watersheds fitting easily within hydrologic units with 12-digit codes, and has been calibrated for low-gradient topography of the Southeast coastal plain. We established protocols; made changes related to peak rate factors, travel time formulas, curve numbers, and the initial abstraction ratio; and then tested the output with multi-site validation using U.S. Geological Survey measurements of discharge and rainfall. Validation results from both undeveloped and developed watersheds support the robustness of our system in quantifying and simulating runoff: rainfall to runoff differences between measured and simulated volumes ranged from 3 to 11%; r2 for hydrograph curves ranged from 0.82 to 0.98. SWARM can be a useful tool for scientific research and for coastal resource management and decision making in the Southeast coastal plain specifically and also may be applied to other areas by recalibrating parameters and modifying calculation templates.

Availability: Anne.Blair@noaa.gov


Note to readers with disabilities: Some scientific publications linked from this website may not conform to Section 508 accessibility standards due to the complexity of the information being presented. If you need assistance accessing this electronic content, please contact the lead/corresponding author, Primary Contact, or nccos.webcontent@noaa.gov.