An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Legacy Publications Explorer

You are here: Publications / Publication Details

Publication Details

Please note this explorer contains 2017 and prior publications and is no longer updated. Visit Data Reports Explorer for the latest NCCOS research data and reports.

User-Driven Tools to Predict and Assess Effects of Reduced Nutrients and Hypoxia on Living Resources in the Gulf of Mexico

Author(s): de Mutsert, Kim

NCCOS Center: CSCOR

Name of Publisher: George Mason University

Place of Publication: Fairfax, VA

Publication Type: Abstract

Date of Publication: 2016

Reference Information: CSCOR NGOMEX Project Summary

Extent of Work: 1 p.

Abstract: Expansive hypoxia in the Northern Gulf of Mexico (NGOMEX) will continue to affect ecologically and economically important living resources, but the magnitude, predictability and even the direction of these changes remain elusive. Managers and stakeholders need readily available and quantitative tools to predict and evaluate the effects on living resources of planned nutrient reduction strategies aimed to minimize the hypoxic zone. We plan to develop user-friendly, management-scale relevant forecasting tools and quantitative indictors. We will also assess the minimum data needs (monitoring or modeling parameters, and time and space scales) to ensure these forecasts produce accurate and useful data required by managers and stakeholders. Previous work in the region by the P.I.s and colleagues resulted in three tested models and expansive datasets from seven cruises, which will be used to estimate effects of reduced nutrient inputs and hypoxic volume on living resources in the NGOMEX, and will form the basis of user-friendly tools to be transferred to resource managers. The coupling of two different fisheries modeling approaches (physiological-based and ecosystem-based) with the same 3D hydrodynamic/water quality model ensures that questions of varying levels of resolution can be addressed.

Availability: Available from NCCOS Publications Explorer and from the author.

Related Attachment: Download file (.pdf)


Note to readers with disabilities: Some scientific publications linked from this website may not conform to Section 508 accessibility standards due to the complexity of the information being presented. If you need assistance accessing this electronic content, please contact the lead/corresponding author, Primary Contact, or nccos.webcontent@noaa.gov.